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Abstract
The digital transformation of pathological images into Whole
Slide Images (WSIs) is pivotal in cancer diagnostics, repre-
senting the gold standard for diagnosis. However, classifying
WSIs poses substantial challenges, primarily due to their gi-
gapixel resolution and the limited availability of annotated
data. To overcome these obstacles, we propose a novel Multi-
modal Prompt Learning Multiple Instance Learning (MP-
MIL) framework, specifically designed for efficient few-shot
WSI classification. This innovative approach employs GPT-4
to generate descriptive prompts, thereby enhancing the tex-
tual context of WSIs during training. The framework refines a
Vision-Language model using solely image and text prompts,
leading to significant reductions in computational training
costs while maintaining high performance. Additionally, MP-
MIL introduces an instance prompt-guided pooling mecha-
nism that effectively captures richer semantic features, aid-
ing in the aggregation of image features. The effectiveness of
MP-MIL has been rigorously validated on renowned datasets,
including CAMELYON16 and TCGA-LUNG. These evalu-
ations demonstrate the framework’s ability to markedly de-
crease training expenses and enhance few-shot classification
accuracy in pathological analysis.

Introduction
Histological Whole-Slide Images (WSIs) are the corner-
stone of pathological diagnosis, providing critical insights
into oncological assessments and informing treatment strate-
gies. This diagnostic prowess is documented in seminal
works such as (Li et al. 2021; Lu et al. 2021), which un-
derscore the preeminence of WSIs in medical diagnostics.
Within the analytical framework of WSIs, Multiple Instance
Learning (MIL) has gained traction as a compelling method-
ology. MIL conceptualizes a WSI as a collection, or ’bag’,
of numerous smaller segments, referred to as ’patches’ or
’instances’. The diagnostic paradigm within MIL posits that
a bag is classified as negative if all constituent patches are
negative, whereas the detection of even a single positive
patch suffices to classify the entire bag as positive, a prin-
ciple detailed in (Qu et al. 2022). Traditional approaches to
WSI analysis rely on feature extraction from instances using
pre-trained models on natural images, subsequently apply-
ing MIL for classification. These methodologies, however,
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inherently assume the availability of extensive labeled data
at the bag level for training. The scarcity of pathological
data, however, poses a critical challenge for these traditional
MIL approaches. This scarcity stems from a constellation of
factors: stringent patient privacy laws, logistical hurdles in
procuring pathological specimens, and the rarity of certain
pathologies. Such constraints necessitate the exploration of
innovative strategies for domain-specific feature extraction
and few-shot classification techniques in WSI analysis.

The advent of vision-language models (V-L models)
has introduced new avenues for computational diagnostics.
Seminal studies (Li et al. 2021; Lu et al. 2021) have illumi-
nated the potential of V-L models, particularly in the con-
text of few-shot learning applications, suggesting their util-
ity in WSI classification tasks. Despite the promise these
models hold, the application of V-L models pretrained on
general domains to the specialized field of pathology is not
straightforward. The divergent characteristics of pathologi-
cal images and text descriptions from those found in general
datasets necessitate the adaptation of these models to the
unique domain of pathology. Moreover, the sheer volume
of instances in WSIs and the corresponding lack of detailed
textual annotations exacerbate the challenge, creating signif-
icant barriers to the effective deployment of V-L models in
pathological analysis.

To navigate these challenges, research must pivot towards
the development of V-L models that are not only robust in
few-shot learning scenarios but are also tailored to accom-
modate the idiosyncrasies of pathological data. Such models
must be capable of discerning subtle histological nuances
from limited annotations and extrapolating these findings to
inform accurate diagnoses. Bridging this gap between gen-
eral V-L models and domain-specific requirements will be
instrumental in realizing the full potential of AI in pathol-
ogy, potentially revolutionizing the field with enhanced di-
agnostic precision and efficacy.

To address these challenges, we introduce a novel Multi-
modal Prompt Learning Multiple Instance Learning (MP-
MIL) framework to achieve precise bag-level classification
with very few training bags. Leveraging the advanced capa-
bilities of GPT-4, we enrich the sparse textual information
of WSI labels with detailed descriptive prompts. We further
fine-tune the V-L model only with trainable image and text
prompts, obviating retraining the large backbone network.



Unlike traditional MIL, which focuses only on the aggrega-
tion of image features, our framework employs an instance
prompt-guided pooling mechanism for instance aggregation.
This allows for a full interaction of textual and image infor-
mation, obtaining a more comprehensive and fine-grained
representation. Overall, our contributions are summarized as
follows:

• We propose a novel Multi-modal Prompt Learning Mul-
tiple Instance Learning (MP-MIL) framework to achieve
few-shot WSI classification, which address the scarcity
of labeled data in the pathological domain.

• We employ GPT-4 to create descriptive prompts that sup-
plement the sparse textual data associated with WSI la-
bels, thereby providing a richer semantic context and en-
hancing understanding of model.

• The MP-MIL framework innovatively employs multi-
modal prompts, incorporating both image and text ele-
ments, to fine-tune a Vision-Language model specifically
for WSI analysis. This approach not only achieves sub-
stantial savings in training costs but also markedly en-
hances the performance of few-shot classification tasks.

• We present a novel instance prompt-guided pooling
mechanism that aggregates the features of individual in-
stances within a WSI bag, which allows for more abun-
dant semantic feature representation by incorporating
text prompts as a guide for the feature aggregation.

Related Work
Multiple Instance Learning in WSI classification
Existing WSI analysis approaches generally adopt Multi-
ple Instance Learning (MIL) to conduct WSI classifica-
tion (Campanella et al. 2019; Lerousseau et al. 2020; Xu
et al. 2019; Li, Li, and Eliceiri 2021; Zhang et al. 2022;
Wang et al. 2018). The high-resolution WSI are partitioned
into image patches before further processing to fit the data
in modern computation hardware. In this case, MIL fits the
classification task of WSI by corresponding the slides to
bags, and patches to instances. Many MIL methods have as-
sumption that the instances are independent and identically
distributed (i.i.d.), which is not suitable for many applica-
tion scenarios (e.g., a patient gastroscopy picture set). To
deal with this, TransMIL (Shao et al. 2021) proposed a TPT
architecture, using two transformer layers and a pyramid en-
coder to implement correlated-instance learning and mine
information between instances. To improve the attention un-
certainty, Bayes-MIL (Yufei et al. 2022) is proposed to im-
plement a regularlization type skill over attention weights.
IBMIL (Lin et al. 2023) designs an interventional training
to deal with “bag contextual prior”: there exits shared things
within bags , which is not directly related to their assigned
labels, can still influence the final predictions. MIL could
also help vision transformer to utilize patch-level features
rather than only cls-token by a MIL head (Yu et al. 2021).

Vision-language Models and Prompt Learning
Pre-trained vision-language (V-L) models such as CLIP
(Radford et al. 2021), ALIGN (Jia et al. 2021), and FLIP

(Yao et al. 2021) have shown immense promise in the ar-
eas of visual representation and transfer learning, having
been trained on large volumes of image-text pairs. These V-
L models incorporate a dual-tower architecture consisting
of visual and text encoders and leverage contrastive learn-
ing to synchronize text-to-image and image-to-text corre-
spondences within the feature space. It’s noteworthy that
pre-trained V-L models, for example, CLIP (Radford et al.
2021), exhibit impressive transferability in image recogni-
tion tasks. By strategically formulating text descriptors, also
known as prompts, to match the associated image features
within the feature space, these models facilitate classifica-
tion tasks in a zero-shot or few-shot manner. Building upon
the success of CLIP, CoOp (Zhou et al. 2022) substitutes
these handcrafted prompts with a learned prompt repre-
sentation, thus enhancing the applicability of V-L models
to downstream few-shot classification (FSC) tasks. Encour-
aged by the success of V-L models in FSC within the realm
of natural imagery, we put forth several techniques to effi-
ciently tailor pre-trained V-L models to tackle the few-shot
within-class (FSWC) problem.

Proposed Solution
Problem Formulation
Given a dataset X = {X1, X2, . . . , XN} comprising N
WSIs, and each WSI Xi is partitioned into non-overlapping
small patches {xi,j ; j = 1, 2, . . . , ni}, where ni represents
the number of patches obtained from Xi. All patches within
Xi collectively form a bag, and each patch serves as an in-
stance of that bag. The bag is assigned a label Yi ∈ {0, 1},
where i = {1, 2, . . . , N}. The labels of each instance
{yi,j ; j = 1, 2, . . . , ni} are associated with the bag label in
the following manner:

Yi =

{
0, if

∑
j yi,j = 0

1, else
(1)

This implies that all instances within negative bags are
assigned negative labels, whereas positive bags contain at
least one positive-labeled instance. In the context of weakly-
supervised MIL, only the bag label is provided for the train-
ing set, while the labels of individual instances remain un-
known. The Few-shot Weakly-supervised WSI Classifica-
tion (FSWC) task poses an even greater challenge as it al-
lows for only a limited number of labeled bags for training.
Typically, only a small number of bags per class, such as 1,
2, 4, 8, or 16, are available. The objective of FSWC is to
accurately classify both the bags and individual instances,
despite the scarcity of labeled training bags.

Overview
To effectively address the few-shot WSI classification chal-
lenge, we introduce a Multi-modal Prompt Learning MIL
framework, denoted as MP-MIL, as shown in Figure 1.
Firstly, we employ a frozen Image Encoder of CLIP, to pro-
cess each instance xi within a bag Bi. This encoder di-
vides each instance into smaller patches, subsequently em-
bedding them into tokens. Alongside this, a Trainable Im-
age Prompt is concatenated and integrated into the image
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Figure 1: Overview of MP-MIL.

encoder. Following this, we aggregate these individual fea-
tures into a unified bag feature Fi by instance prompt-guided
pooling mechanism. Subsequently, we utilize GPT-4 to intri-
cately describe the bag class label as a Descriptive Prompt,
and incorporate an additional Trainable Text Prompt to au-
tonomously capture deeper semantic nuances. Both the De-
scriptive Prompt and the Trainable Text Prompt are fed into
the Text Encoder of CLIP to produce a Bag text token Ti.
The primary training goal revolves around leveraging a lim-
ited set of bag-level labeled data to finetune the Trainable
Image Prompt vectors VI and the Trainable Text Prompt vec-
tors VT . In culmination, we use this sparse labeled data to
optimize VI and VT through a cross-entropy loss function,
aiming to maximize similarity between the whole slide im-
age and its descriptive label.

For the inference phase, we evaluate the matching de-
gree between the image features and all corresponding target
class bag prompt features to ascertain the classification cat-
egory in whole slide image bag classification.

Construction of Prompts
We utilized the prompt “Describe the morphological char-
acteristics of the LABEL in a single sentence in English.”
to obtain label descriptions through GPT-4. When utilized,
the placeholder tag LABEL is substituted with each specific
label in the process.

LUAD: LUAD (Lung Adenocarcinoma) typically ex-
hibits a diverse array of cell types, including glandular,
papillary, and acinar structures with mucin production, and
varying differentiation levels from well-differentiated to
poorly differentiated.

LUSC: LUSC (Lung Squamous Cell Carcinoma) is char-

acterized by tumor cells forming sheet-like squamous struc-
tures, possibly showing keratinization features like keratin
pearl formation, and is typically well-differentiated.

Metastasis: Metastasis slides typically exhibit abnormal
cell morphology, such as irregular cell shapes, sizes, and
staining characteristics, along with disrupted tissue struc-
tures and prominent nuclear changes.

Non-Metastasis: Non-metastasis slides are characterized
by normal cell morphology with regular shapes, sizes, and
staining, intact tissue structures, and regular nuclear fea-
tures, indicating the absence of cancerous cell spread.

Instance Aggregator Module
The Instance Aggregator (IA) module is used to aggregate
the fine-grained diagnosis prompts and instance features.
IA consists of a self-attention module and a cross-attention
module.

We employ self-attention to enable feature interaction
among instance features Ii = [ei1, ei2, · · · , eij ], resulting in
the feature si. Subsequently, utilizing the Bag Text Feature
Q to aggregate the instance features and acquire the feature
zi. Then we concatenate si and zi, utilizing the learnable
parameter W to fuse these features, ultimately yielding the
bag-level feature vi. The formulas are shown as follows:

si = SelfAttention(Ii, Ii) + Ii (2)
zi = CrossAttention(Q, si) (3)
vi = concat(mean(si),mean(zi)) ·W (4)

Ultimately, we acquire the image bag-level features
guided by the text prompts, which are then employed to
align the Bag Text Features.



Encoder and Loss Function
We divide each WSI into instances xk and encode these in-
stances into embeddings ek ∈ RD using pre-trained vision
encoder Eimg , composed with ResNet-50 or Transformer
structure following (Li, Li, and Eliceiri 2021). Then we send
the instance embeddings into the TFS Module to aggregate
the instance features and prompts, and obtain the bag-level
embeddings vi ∈ RD. The formulas are shown as follows:

ek = Eimg([xk, VI ]) (5)
Ii = [ei1, ei2, · · · , eik] (6)
vi = IA(Ii, Etxt(Q)) (7)

Besides, we generate pathologically meaningful text em-
beddings, represented as ti ∈ RD, by leveraging the fine-
tuned text encoder BioClinicalBERT (Wolf et al. 2019).

tci = Etxt([xtxt, VT ]) (8)

where Etxt denotes the text encoder, and xc
txt(c ∈ [1, C])

where C denotes the number of categories. Here we use the
same embedding dimension D as the vision encoder, suit-
able for contrastive learning.

Subsequently, the bag-level embeddings vi are aligned
with the text embeddings tci to complete the training process.
In this case, prediction ŷ is obtained by applying softmax
on scaled cosine similarities between the image embeddings
and text embeddings:

p(ŷ = c|I) = exp(sim(tci , vi)/τ)∑C
c′=1 exp(sim(tc

′

i , vi)/τ)
(9)

where sim(·, ·) refers to cosine similarity and τ is the tem-
perature parameter.

The training loss is computed as the cross-entropy be-
tween the logits and soft targets as:

Lv→t = − 1

N

N∑
i=1

N∑
i=j

yij log(pij) (10)

here N corresponds to the batch size.
Likewise, we can compute Lt→v and serve L as the final

training objective.

L =
Lv→t + Lt→v

2
(11)

Experiments
Dataset
We evaluated our method on public histopathology WSI
datasets: The Cancer Genome Atlas Lung (TCGA Lung)
Cancer1 and Camelyon16 (Bejnordi et al. 2017).
TCGA Lung Cancer. The TCGA Lung Cancer dataset
comprises two cancer subtypes: Lung Adenocarcinoma
(LUAD) and Lung Squamous Cell Carcinoma (LUSC). It
includes diagnostic slides with 541 slides from 478 LUAD
cases and 512 slides from 478 LUSC cases. For WSI pre-
processing, following the method described by (Li, Li, and

1http://www.cancer.gov/tcga

Eliceiri 2021), we cropped each WSI into non-overlapping
patches of 256 × 256 pixels and removed the background re-
gions. The dataset encompasses approximately 5.2 million
patches at 20× magnification, averaging about 5,000 patches
per WSI.
Camelyon16. The Camelyon16 dataset (Bejnordi et al.
2017) consists of 399 Hematoxylin and Eosin (H&E) stained
slide images, utilized for metastasis detection in breast can-
cer. We preprocessed each WSI by segmenting it into 256
× 256 non-overlapping patches, excluding background re-
gions. In total, this process yields approximately 2.8 million
patches at a 20× magnification level, averaging about 7,200
patches in a Bag.

Results on the TCGA Lung Cancer Dataset
Our model demonstrates adaptability to various tasks even
in scenarios with limited data availability. Few-shot experi-
ments were conducted to demonstrate its transferability to
downstream tasks. We initialized the networks with pre-
trained weights derived from a model trained on TCGA
image-report pairs, and subsequently fine-tuned the model
on downstream datasets for few-shot image classification.
We followed (Qu et al. 2023) and conducted experiments
with 1, 2, 4, 8, 16. The results are summarized in Table 1.
Mean-pool, Max-pool, and Attn-pool correspond to Linear-
Probe implementations with Mean-pooling, Max-pooling,
and Attention-pooling, respectively.

Method 16-shot 8-shot 4-shot 2-shot 1-shot

Mean-pool 65.33 53.89 44.85 52.93 45.34
Max-pool 48.48 49.55 44.22 48.39 49.03
Attn-pool 72.50 65.79 62.47 58.36 56.23

CoOp 78.35 67.99 67.60 67.54 67.81
TOP 82.06 80.51 75.41 72.38 71.01

Ours 84.25 82.80 80.10 75.51 73.91

Table 1: Few-shot classification performance on TCGA
Lung Cancer.

The Mean-pool approach yielded moderate accuracy,
peaking at 65.33% for the 16-shot case and diminishing
to 45.34% in the 1-shot scenario. The Max-pool method
demonstrated lower performance, with a maximum accu-
racy of 49.55% in the 8-shot setting. The Attention-pool
(Attn-pool) method showed improved results, particularly in
the 4-shot configuration, achieving a 62.47% accuracy rate.
The Co-Op strategy further enhanced the outcomes, attain-
ing a peak of 78.35% in the 16-shot case. The TOP method
exhibited robust performance with a high of 82.06% accu-
racy for the 16-shot condition. Our proposed method outper-
formed all others, achieving the highest accuracy across all
few-shot settings, with an impressive 84.25% in the 16-shot
framework and maintaining a considerable 73.91% even in
the challenging 1-shot scenario. These findings suggest that
our method provides a substantial improvement in few-shot
learning for WSI classification, potentially setting a new
benchmark for future research in AI pathology.



Method 16-shot 8-shot 4-shot 2-shot 1-shot

Mean-pool 67.56 65.11 66.11 66.56 65.11
Max-pool 38.33 62.00 60.11 58.78 58.78
Attn-pool 80.00 74.00 75.33 69.00 52.22

CoOp 69.94 68.00 67.56 69.54 .65.44
TOP 82.33 80.24 78.89 76.22 70.44

Ours 85.15 83.11 81.10 77.11 73.60

Table 2: Few-shot classification performance on Camelyon16.

TIP TTP DP IA 16-shot 8-shot 4-shot 2-shot 1-shot
✓ 64.31 62.23 59.77 52.85 50.58
✓ ✓ 75.21 73.19 71.21 68.36 61.01
✓ ✓ ✓ 81.22 80.01 78.56 76.01 71.17
✓ ✓ ✓ ✓ 84.25 82.80 80.10 75.51 73.91

Table 3: The ablation experiment on the TCGA Lung Cancer. TIP, TTP, DP and IA correspond to Trainable Image Prompt,
Trainable Text Prompt, Descriptive Prompt, and Instance Aggregator, respectively.

Results on the Camelyon16 Dataset
The bag classification and instance classification perfor-
mance on the Camelyon 16 dataset are shown in Table 2.
It can be seen that MP-MIL achieved the best bag classifica-
tion performance in all few-shot settings, and significantly
outperformed all comparison methods by a large margin. It
can be observed that Linear-Probe with Mean/Max pooling
can hardly work. Although using trainable attention pool-
ing helps learn the importance of each instance and im-
proves the performance of Linear-Probe, it still has limita-
tions in performance. Prompt learning with fully trainable
prompts in CoOp outperforms Linear-Probe. In contrast,
our method used a multi-modal prompt learning paradigm,
which achieved the best performance on both bag.

The Mean-pool strategy exhibits a consistent accuracy,
achieving 67.56% in the 16-shot and maintaining a steady
performance across all scenarios, dipping slightly to 65.11%
in the 1-shot evaluation. The Max-pool method, while start-
ing at a lower accuracy of 38.33% for 16-shot, shows a sig-
nificant increase, peaking at 62.00% for 8-shot and 4-shot
conditions. The Attn-pool method displays a strong per-
formance, particularly in the 16-shot (80.00%) and 4-shot
(75.33%) settings, but falls to 52.22% in the 1-shot sce-
nario. The CoOp approach yields a moderate performance
with a high of 69.94% for 16-shot, and the TOP method
shows commendable results, especially at 78.89% for 4-shot
classification. Our proposed method surpasses these figures,
registering the highest accuracy of 85.15% in the 16-shot
and consistently high performance down to 73.60% in the
1-shot condition. These outcomes underscore the efficacy of
our method, indicating its superiority in leveraging few-shot
learning for accurate classification in pathology image anal-
ysis.

Ablation Study
Table 3 showcases the results from an ablation study on the
TCGA Lung Cancer dataset, evaluating the impact of dif-

ferent components on few-shot classification performance.
These components include Trainable Image Prompt (TIP),
Trainable Text Prompt (TTP), Descriptive Prompt (DP), and
Instance Aggregator (IA). The study reveals that the use of
TIP alone provides modest accuracy, reaching 64.31% in the
16-shot setting and declining to 50.58% in the 1-shot sce-
nario. The integration of TTP enhances performance, partic-
ularly notable at 75.21% for 16-shot and 61.01% for 1-shot.
The combination of TIP and DP further improves the re-
sults, achieving 81.22% in the 16-shot and 71.17% in the
1-shot context. Incorporating IA with TIP and DP yields
the most significant improvements across all few-shot con-
ditions, culminating in a peak accuracy of 84.25% for 16-
shot and maintaining a robust 73.91% for 1-shot. These find-
ings illustrate the synergistic effect of the combined compo-
nents, with the full model configuration providing the most
substantial gains in classification performance, underscoring
the value of each element in the proposed few-shot learning
framework.

Conclusion

In this study, we introduce a Multi-modal Prompt Learning
approach for Few-shot Whole Slide Image Classification,
termed MP-MIL, designed to address the FSWC challenge
effectively. The MP-MIL framework leverages GPT-4 for
generating bag-level visual descriptions, aiding in instance
feature aggregation and facilitating bag-level prompt learn-
ing. Our experiments on the WSI classification task demon-
strate the approach’s high efficacy in FSWC tasks. The pri-
mary objective of this research is to encourage further ex-
ploration into the integration of foundational models with
large-scale language models for pathology Whole Slide Im-
age classification. We anticipate that such investigative ef-
forts will mark the advent of a transformative phase in AI-
driven pathology.
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